
u-root: A Go-based, Firmware
Embeddable Root File System with

On-Demand Compilation
Ron Minnich,

Gan-shun Lim, Ryan
OLeary, Chris Koch,

Google

Andrey Mirtchovski
Cisco

Outline
● Go in 60 seconds
● What u-root is
● How it all works
● Using Go ast package to transform Go
● Where we’re going

Go in 60 seconds

● New language from Google, released 2009
● Creators include Ken, Rob, Russ, Griesemer
● Not Object Oriented

○ By design, not ignorance
● Designed for systems programming tasks

○ And really good at that
● My main user-mode language since 2010
● Addictive

Go in 60 seconds:goo.gl/dIJrYG
// You can edit this code!
// Click here and start typing.
package main

import "fmt"

var a struct {
i, j int

}

● Every file has a
package

● Must import
packages you use

● Declare ‘a’ as an
anon struct

Go in 60 seconds

Could also say:

type b struct {
I, j int

}
var a b

● Note declarations
are Pascal-style,
not C style!

● “The type syntax
for C is essentially
unparsable.” - Rob
Pike

Go in 60 seconds: goo.gl/dIJrYG

func init() {
a.i = 2

}

func main() {
b := 3
fmt.Printf("a is %v, b is %v\n", a, b)

}

● init() is run before
main

● You can have
many init()
functions

● b is declared and
set

● %v figures out type
using go reflection

Could also say ...

fmt.Printf(“%d”, b)

Package example https://goo.gl/X2SqyZ
// You can edit this code!
// Click here and start typing.
package hi

var (
internal int
Exported int

)

● variables/functions
starting in lowercase are
not visible outside
package; those starting in
Uppercase are

● No export/public keyword

Package: https://goo.gl/X2SqyZ

func youCanNotCallFromOutside() {
fmt.Println("hi")

}
func YouCanCallFromOutside() {

fmt.Println("hi")
}

First class functions:goo.gl/pP4FcJ
package main

import "fmt"

var c = func(s string) {fmt.Println("hi", s)}
func main() {

p := fmt.Println
p("Hello, 世界")
c(" there")

}

Go in 60 seconds

● Compiler is really fast (originally based on
Plan 9 C toolchain)

● V 1.2 was fastest; currently at 1.9, rewritten
in Go, is still quite fast

● Compile all of u-root, including external
packages, in under 15 seconds

● Package syntax makes finding all imports
easy

u-root

● Go-based rootfs
○ Commands/packages written in Go
○ In one mode, MAX, compiled on demand

● 1 or 4 pre-built binaries:
○ /init
○ Go toolchain -- if compiling on demand

● Type a command, e.g. rush (shell)
○ rush and its packages are compiled to /ubin and run
○ Compilation is minimal and fast (½ second)

Key idea: $PATH drives actions

● PATH=/bin:/ubin:/buildbin
○ /bin is usually empty
○ /ubin is initially empty

● /buildbin has symlinks to an installcommand
● First time you type rush: found in /buildbin

○ Symlink in /buildbin: rush -> installcommand
○ Installcommand runs, builds argv[0] into /ubin

■ Execs /ubin/rush
● Next time you type rush, you run /ubin/rush

Installcommand is built on boot

● Init builds installcommand in /buildbin
● For each d in

/src/github.com/u-root/u-root/cmds/*, init
creates /buildbin/d ->
/buildbin/installcommand

● init forks and execs rush
○ which may be compiled by the installer and run

● init: 206 lines

“U” is for “Universal”

● Single root device for all Go targets
● New architecture requires only 4 binaries
● For multi-architecture root, proper

(re)arrangement of paths is needed
○ E.g., /init -> /linux_<arch>/init

Variations on u-root for embedded

● Not everyone wants source in FLASH
● Some FLASH parts are small
● Hence the root image can take many forms
● But source code never changes

○ I.e. no specialized source code for embedded

Variations of u-root
4 binaries per architecture, all
commands in source form, dynamic
compilation, multiple architectures in one
root device

Post-boot model -- i.e. local disk,
nfsroot, etc.

MAX

More than 4 binaries per architecture:
some/all commands precompiled,
dynamic compilation, multiple
architectures in one root image

Post-boot model where faster boot is
required

4 binaries, all commands in source form,
dynamic compilation, one architecture

Pre- or Post- boot model: u-root
installed in firmware or local device

All commands built into one binary which
forks and execs each time

Usually firmware but also netboot of
“kexec” image

MIN

A deeper look at u-root “MAX”

● Standard kernel
● four Go binaries per architecture*

○ init/build binary (part of u-root, written in Go)
■ Merged-in minimized go build tool

○ Compile, asm, link
● All required Go package source
● u-root source for basic commands
● in 5.9M (compressed of course! :-)

Root structure at boot

/

linux_amd64/

linux_arm/

linux_ppc64le/

init

init

init

src/

go/

github.com/

...

src

pkg

...

tool

linux_arm/

linux_ppc64le/

linux_amd64/

Go package compiled on demand

U-root source

U-root init
binaries (only
one required)

Go source

Go toolchain
Only one
architecture
type required

Only one required
and it can be called
/init if desired

Other source

Init builds directories, mounts, ...

/

buildbin/

rush -> installcommand
cat -> installcommand
...

installcommand

ubin/

create etc/, dev/, proc/
mknod, mount, create any needed
files (e.g. resolv.conf)

Directory of symlinks
built by init

Init creates required
device nodes, mount
points, and mounts

installer binary

Init tasks

● /ubin is empty, mount tmpfs on it
● /buildbin is initialized by init with symlinks to

a binary which builds commands in /bin
● PATH=/go/bin:/bin:/ubin:/buildbin
● create /dev, /proc, /etc
● Create inodes in /dev
● mount procfs
● Create minimal /etc/resolv.conv

Running first sh (rush)

● Init forks and execs rush
● If rush is not in /ubin, falls to /buildbin/rush

(symlink->installcommand) runs
● /buildbin/installcommand directs go to build

rush, and then execs /ubin/rush
● And you have a shell prompt
● From rush, same flow for other programs

Using Go to write more Go

● For scripting
● For dynamically creating shells with builtins
● For creating small memory pre-compiled

versions of u-root (“busybox mode”)

Script for ip link command
run { ifaces, _ := net.Interfaces()

for _, v := range ifaces {
addrs, _ := v.Addrs()
fmt.Printf("%v has %v", v, addrs)

} }
● Result:

ip: {1 1500 lo up|loopback} has [127.0.0.1/8 ::1/128]
ip: {5 1500 eth0 fa:42:2c:d4:0e:01 up|broadcast} has [172.17.0.2/16 fe80::f842:2cff:fed4:e01/64]

● But it’s not really a program … how’s that work?

‘Run’ command rewrites fragment
and uses the go import package
● run reads the program

○ If the first char is ‘{‘, assumes it is a fragment and
wraps ‘package main’ and ‘func main()’ boiler plate

● Import uses the Go Abstract Syntax Tree
(ast) package:
○ Parses a program
○ Finds package usage
○ Inserts go “import” statements

The result

● run program builds and
runs the code

● Uses Go to write new Go

package main
import “net”
import “fmt”
func main(){

 ifaces, _ := net.Interfaces()

for _, v := range ifaces {

addrs, _ := v.Addrs()

fmt.Printf("%v has %v", v, addrs)

 }

}

Taking rewriting further

● Request for single-binary version of u-root
for Cubieboard
○ Allwinner A10 --> not very fast

● Wanted to compile all u-root programs into
one program

Taking rewriting further

● With the ast package, we can rewrite
programs as packages, e.g. ls.go

package main

var x = flag.String(“l”, …)
func init() {...}
func main() {
}

package ls

var x = flag.String(“ls.l”, …)
func Init() {...}
func Main() {
}

● Combine all of u-root into one program
● Turning 65 programs into one: 10 seconds

What is all this good for?

● Building safer startup environments
● We can verify the root file system as in

ChromeOS, which means we verify the
compiler and source, so we know what we’re
running

● Much easier embedded root
● Security that comes from source-based root
● Knowing how things work

But I want bash!

● It’s ok!: tinycorelinux.net has it
● The tcz command installs tinycore packages
● tcz [-h host] [-p port] [-a arch] [-v version]

○ Defaults to tinycore repo, port 8080, x86_64, 5.1
● Type, e.g., tcz bash
● Will fetch bash and all its dependencies
● Once done, you type
● /usr/local/bin/bash (can be in persistent disk)

Where to get it

github.com/u-root/u-root
Instructions on
U-root.tk

What’s this have to do with Google

● New project, NERF
● Non-Extensible Reduced Firmware
● Basic idea

○ Reduce functionality and extensibility of ME/UEFI
○ Replace what you lost with Linux
○ Arrange for PEI to call Linux instead of UEFI shell

Steps
● ME clean to make room

○ Minnow MAX: reduces 5M to 300K for ME (!!!)
○ Remove UEFI DXEs that provide net-, disk-, usb-,

http-, file system- zero day support; keep UEFI shell
○ Remove all UEFI apps (no more ring 0 apps!)

● The fun bit: replace code in UEFI shell PE
with a linux kernel (we love UEFITool)

● PEI then starts linux kernel
● Servers are back after 10 years!

Status

● Demonstrated on 4 motherboards
● Hope to have a single Go tool to do the job

in a few months
● Looking for collaborators
● While we prefer coreboot-based systems we

can use u-root on UEFI-based systems via
NERF

Implications for coreboot

● NERF is like coreboot with ramstage
removed
○ And linux replacing ramstage
○ Which is what LinuxBIOS was

● Did some experiments last year with
replacing ramstage with Harvey-OS

● Plan to experiment this fall with Linux
replacing coreboot ramstage

Further craziness

● RISCV has M-mode, which is like SMM
○ Problem: M-mode code, data visible to kernel
○ Fix: Make kernel provide M-mode blob
○ Hmm … on x86, let kernel provide SMM code, since

we’re replacing ramstage with kernel anyway?
● If kernel provides SMM blob we may close

off a whole class of exploits
● And avoid friendly firmware writing garbage

Demo time (Thanks Marshall!)

Extra

HP FALCO 2-core chromebook, 4GiB

● First build of all packages for
/bin/installcommand ~5s
○ runs 162 commands, builds many more files

● Subsequent commands are much faster
because more packages are already built

● Date + 2 packages is 2 seconds
● Once built, it’s instantaneous (statically

linked; in tmpfs!)

builtins? Need to go a bit deeper

● Normally builtins extend interpreted shell
code

● u-root builtins extend the shell binary by
recompiling the shell with new functions

● Builtin command is a superset of run
● First, let’s look at a shell builtin

Basic builtin(s)

builtin \
hi ‘{ fmt.Printf(“hi\n”) }’ \

 there ‘{fmt.Println(“there”)}’
● Create a new shell with hi and there

commands

Builtins combine script and rebuild
package main

import "errors"

import "os"

func init() {

addBuiltIn("cd", cd)

}

func cd(cmd string, s []string) error {

if len(s) != 1 {

return errors.New("usage: cd one-path")

}

err := os.Chdir(s[0])

return err

}

● This is the ‘cd’ builtin
● Lives in /src/sh
● When sh is built, it is

extended with this builtin
● Create custom shells with

built-ins that are Go code
● e.g. temporarily create

purpose-built shell for init
● Eliminates init boiler-plate

scripts

Customize the shell in a few steps

● create a unique tempdir
● copy shell source to it
● convert sets of Go fragments to the form in

previous slide
● Create private name space with new /ubin
● mount --bind the tempdir over

/src/cmds/rush/ and runs /ubin/rush
● You now have a new shell with a new builtin

The new shell

● Child shells will get the builtin
○ since they inherit the private name space

● Shells outside the private name space won’t
see the new shell

● When first shell and kids exit, builtin is gone
● Custom builtins are far more efficient

○ Need a special purpose shell many times?
○ You can pay the cost once, not once per exec

